Abstract:
Humidity sensors with high sensitivity and fast response characteristics are of great interest for researchers. In this work, capacitive humidity sensors were fabricated using ionic liquid/cellulose nanofibers (CNFs) as the composited sensing film. The porous CNFs are beneficial for preparing sensing films via a solution process, and the ionic liquid could be uniformly dispersed in the films. The humidity-sensing performance of the as-prepared sensors was investigated. The optimized sensor showed a high response (27.95 pF/% RH) in a wide humidity range (11–95% RH) and a fast response speed in the adsorption process (the recovery time was only ~1 s). The high response of the sensors was attributed to the polarization at the interface between the electrolyte and the metal electrode, while the fast recovery was due to the rapid desorption of water molecules on the sensing films. Finally, the application of the obtained sensors in human breath monitoring was explored.
Keywords: humidity sensor; high sensitivity; fast recovery; breath monitoring