Abstract
Rational design of tin dioxide (SnO2) nanomaterials with superior architectures and outstanding physicochemical capabilities is highly desirable for gas sensors. Here, three SnO2 nanostructures with different morphologies, particles, core-shell spheres and facet-exposed crystals, are developed and further applied to track amounts of volatile organic compounds (VOCs). Porous SnO2 core-in-hollow-shell sphere-based sensors exhibited enhanced sensing properties, especially a higher sensitivity than SnO2 particles. The monocrystalline SnO2 single-crystal-based sensor, which has dominant exposed (1 1 0) and (2 2 1) facets, also showed a superior sensing performance, especially faster response/recovery speed than the SnO2particle-based sensor. The enhanced gas-sensing properties are mainly ascribed to the structural sensitization, and these results further confirm that the SnO2 core-shell structure and exposed single crystal exposed with high energy can provide more numerous active sites for gas molecule adsorption than that of SnO2 particles.
Keywords
Tin oxide;
Porous surface;
Crystal facet;
VOC;
Gas sensor