Abstract
It is well known that composite materials, consisting of at least two metal oxides, show qualities and sensing behavior very different from the single components. Recently, the preparation of core–shell nanomaterials for gas sensors has become extremely popular. Specifically, these materials have been found to show desirable sensor responses. The preparation of core–shell nanomaterials is, however, complex, limiting the commercial applicability. Composite materials can be more easily attained simply through the mechanical mixing of the various components. Although some studies exist that attempt to compare mechanically mixed composites to those prepared via a synthetic route, these examinations are often flawed, as due to varying preparation methods, the basic characteristics of the materials are not the same. Here, it was possible to separate the role of the contacts between the materials from that of the secondary core–shell structure, by using a soft method to mechanically break apart the structure. This ensures that the difference in morphology is the only change in the material characteristics. It was verified that the composite materials show a different sensing behavior from that of the pure materials. It was also found that regardless of the secondary structure, the composite materials showed very similar sensor responses. By examining materials containing different ratios of Cr2O3 to SnO2, it was possible to attribute the sensor behavior changes to the contacts between the different metal oxides. It was shown that by varying the concentration of each oxide it is possible to attain either an n- or p-type response and at a certain concentration even no response. This work is significant because it identifies that the contact between the materials plays the dominant role in the sensor response and it shows the viability of mechanical mixing for composite sample preparation.
KEYWORDS:heterojunction; composite materials; metal oxides; gas sensor