Abstract
Herein, a two-step electrodepostion method was carried out for in situ growth of Ag metal-reduced graphene oxide-carbon nanotube on indium tin oxide (Ag-rGO-CNT/ITO). Firstly, rGO-CNT hybrids have been synthesized on ITO electrode by electrodeposition of GO-CNT dispersion, and then, Ag metal has been deposited on the surface of rGO-CNT/ITO by the electrodeposition method. Combining unique properties of rGO-CNT hybrids and excellent catalytic activity of Ag metal, Ag-rGO-CNT/ITO exhibits good catalytic activity for electrocatalytic reduction of hydrogen peroxide (H2O2). The non-enzymatic H2O2 sensor based on Ag-rGO-CNT/ITO electrode shows the linear detection range about 0.05 to 1.40 mM (R = 0.999), and the detection limit is estimated to be 1.32 μM at a signal-to-noise ratio of 3. Furthermore, the Ag-rGO-CNT/ITO electrode exhibits good anti-interference capability, compared to other interferences such as ascorbic acid, dopamine, uric acid, NaNO3, NaNO2 and glucose.
Keywords